A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking

نویسندگان

  • Ximing Du
  • Jaspal Kumar
  • Charles Ferguson
  • Timothy A. Schulz
  • Yan Shan Ong
  • Wanjin Hong
  • William A. Prinz
  • Robert G. Parton
  • Andrew J. Brown
  • Hongyuan Yang
چکیده

Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts. Cholesterol appears to accumulate in the limiting membranes of endosomal compartments in ORP5-depleted cells, whereas depletion of NPC1 or both ORP5 and NPC1 results in luminal accumulation of cholesterol. Moreover, trans-Golgi resident proteins mislocalize to endosomal compartments upon ORP5 depletion, which depends on a functional NPC1. Our results establish the first link between NPC1 and a cytoplasmic sterol carrier, and suggest that ORP5 may cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endosomal cholesterol trafficking: protein factors at a glance.

The delivery of low-density lipoprotein-derived cholesterol (LDL-C) from endosomal compartments to the plasma membrane and the endoplasmic reticulum (ER) is an important yet poorly understood cellular process. Niemann-Pick C1 (NPC1), a multi-pass integral membrane protein on the limiting membranes of late endosomes (LE)/lysosomes (Ly), is known to insert lumenal LDL-C to the limiting membrane o...

متن کامل

Membrane and protein interactions of oxysterols.

PURPOSE OF REVIEW Oxysterols, oxidation products of cholesterol, mediate numerous and diverse biological processes. The objective of this review is to explain some of the biochemical and cell biological properties of oxysterols based on their membrane biophysical properties and their interaction with integral and peripheral membrane proteins. RECENT FINDINGS According to their biophysical pro...

متن کامل

The oxysterol-binding protein superfamily: new concepts and old proteins.

The Kes1 OSBP (oxysterol-binding protein) is a key regulator of membrane trafficking through the TGN (trans-Golgi network) and endosomal membranes. We demonstrated recently that Kes1 acts as a sterol-regulated rheostat for TGN/endosomal phosphatidylinositol 4-phosphate signalling. Kes1 utilizes its dual lipid-binding activities to integrate endosomal lipid metabolism with TORC1 (target of rapam...

متن کامل

miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux.

OBJECTIVE Cholesterol homeostasis is fundamental to human health and is, thus, tightly regulated. MicroRNAs exert potent effects on biological pathways, including cholesterol metabolism, by repressing genes with related functions. We reasoned that this mode of pathway regulation could be exploited to identify novel genes involved in cholesterol homeostasis. APPROACH AND RESULTS Here, we ident...

متن کامل

Discovery of oxysterol-derived pharmacological chaperones for NPC1: implication for the existence of second sterol-binding site.

Niemann-Pick type C1 (NPC1) is a polytopic endosomal membrane protein required for efflux of LDL-derived cholesterol from endosomes, and mutations of this protein are associated with Niemann-Pick disease type C, a fatal neurodegenerative disease. At least one prevalent mutation (I1061T) has been shown to cause a folding defect, which results in failure of endosomal localization, leading to a lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 192  شماره 

صفحات  -

تاریخ انتشار 2011